
Rotest Documentation
Release 3.3.2

gregoil

Sep 03, 2018

Contents

1 Basic 1
1.1 Rotest . 1
1.2 Getting Started . 3
1.3 Command Line Options . 11
1.4 Output Handlers . 19
1.5 Configurations . 22

2 Advanced 27
2.1 Adding Custom Output Handlers . 27
2.2 Blocks code architecture . 29

3 Indices and tables 35

i

ii

CHAPTER 1

Basic

1.1 Rotest

Watch the demo

Rotest is a resource oriented testing framework, for writing system or integration tests.

Rotest is based on Python’s unittest module and on the Django framework. It enables defining simple abstracted
components in the system, called resources. The resources may be DUT (devices under test) or they may help the test
process. The tests look very much like tests written using the builtin module unittest.

1.1.1 Why Use Rotest?

• Allowing teams to share resources without interfering with one another.

• Easily abstracting automated components in the system.

• Lots of useful features: multiprocess, filtering tests, variety of output handlers (and the ability to create custom
ones), and much more.

1.1.2 Examples

For a complete step-by-step explanation about the framework, you can read our documentation at Read The Docs. If
you just want to see how it looks, read further.

For our example, let’s look at an example for a Calculator resource:

import os
import rpyc
from django.db import models
from rotest.management import base_resource
from rotest.management.models import resource_data

(continues on next page)

1

https://pypi.org/project/rotest/
https://pypi.org/project/rotest/
https://travis-ci.org/gregoil/rotest
https://ci.appveyor.com/project/gregoil/rotest
https://coveralls.io/github/gregoil/rotest
http://rotest.readthedocs.io/en/stable/
https://asciinema.org/a/u3B3aMmkipUDLSgTiv1thiBpP
http://rotest.rtfd.io

Rotest Documentation, Release 3.3.2

(continued from previous page)

class CalculatorData(resource_data.ResourceData):
class Meta:

app_label = "resources"

ip_address = models.IPAddressField()

class Calculator(base_resource.BaseResource):
DATA_CLASS = CalculatorData

PORT = 1357
EXECUTABLE_PATH = os.path.join(os.path.expanduser("~"),

"calc.py")

def connect(self):
self._rpyc = rpyc.classic.connect(self.data.ip_address,

self.PORT)

def calculate(self, expression):
result = self._rpyc.modules.subprocess.check_output(

["python", self.EXECUTABLE_PATH, expression])
return int(result.strip())

def finalize(self):
if self._rpyc is not None:

self._rpyc.close()
self._rpyc = None

The CalculatorData class is a standard Django model that exposes IP address of the calculator machine through
the data attribute. Also, we’re using rpyc for automating the access to those machines. Except from that, it’s easy
to notice how the connect method is making the connection to the machine, and how the finalize method is cleaning
afterwards.

Now, an example for a test:

from rotest import main
from rotest.core import TestCase

class SimpleCalculationTest(TestCase):
calculator = Calculator()

def test_simple_calculation(self):
self.assertEqual(self.calculator.calculate("1+2"), 3)

if __name__ == "__main__":
main()

The test may include the setUp and tearDown methods of unittest as well, and it differs only in the request for
resources.

Following, those are the options exposed when running the test:

$ rotest -h
Run tests in a module or directory.

(continues on next page)

2 Chapter 1. Basic

Rotest Documentation, Release 3.3.2

(continued from previous page)

Usage:
rotest [<path>...] [options]

Options:
-h, --help

Show help message and exit.
--version

Print version information and exit.
-c <path>, --config <path>

Test configuration file path.
-s, --save-state

Enable saving state of resources.
-d <delta-iterations>, --delta <delta-iterations>

Enable run of failed tests only - enter the number of times the
failed tests should be run.

-p <processes>, --processes <processes>
Use multiprocess test runner - specify number of worker
processes to be created.

-o <outputs>, --outputs <outputs>
Output handlers separated by comma.

-f <query>, --filter <query>
Run only tests that match the filter expression,
e.g. 'Tag1* and not Tag13'.

-n <name>, --name <name>
Assign a name for current launch.

-l, --list
Print the tests hierarchy and quit.

-F, --failfast
Stop the run on first failure.

-D, --debug
Enter ipdb debug mode upon any test exception.

-S, --skip-init
Skip initialization and validation of resources.

-r <query>, --resources <query>
Specify resources to request by attributes,
e.g. '-r res1.group=QA,res2.comment=CI'.

1.2 Getting Started

Using Rotest is very easy! We’ll guide you with a plain and simple tutorial, or you can delve into each step separately.

1.2.1 Installation

Installing Rotest is very easy. The recommended way is using pip:

$ pip install rotest

If you prefer to get the latest features, you can install Rotest from source:

$ git clone https://github.com/gregoil/rotest
$ cd rotest
$ python setup.py install

1.2. Getting Started 3

Rotest Documentation, Release 3.3.2

1.2.2 Basic Usage

In this tutorial you’ll learn:

• What are the building blocks of Rotest.

• How to create a Rotest project.

• How to run tests.

The Building Blocks of Rotest

Rotest is separated into several component types, each performs its specific tasks. Here is a brief explanation of the
components:

• rotest.core.TestCase: The most basic runnable unit. Just like unittest.TestCase, it defines the
actions and assertions that should be performed to do the test. For example:

from rotest.core import TestCase

class MyCase(TestCase):
def test_something(self):

result = some_function()
self.assertEqual(result, some_value)

• rotest.core.TestSuite: Again, a known concept from the unittest module. It aggregates tests, to
make a semantic separation between them. This way, you can hold a bunch of tests and run them as a set. A
rotest.core.TestSuite can hold each of the following:

– rotest.core.TestCase classes.

– rotest.core.TestSuite classes.

– The more complex concept of rotest.core.TestFlow classes.

from rotest.core import TestSuite

class MySuite(TestSuite):
components = [TestCase1,

TestCase2,
OtherTestSuite]

Creating a Rotest Project

Rotest has a built in a client-server infrastructure, for a good reason. There must be someone who can distribute
resources between tests, that are being run by several developers or testers. Thus, there must be a server that have a
database of all the instances. Rotest uses the infrastructure of Django, to define this database, and to make use of the
Django’s admin frontend to enable changing it.

First, create a Django project, using:

$ django-admin startproject rotest_demo
$ cd rotest_demo

You’ll end up with the following tree:

4 Chapter 1. Basic

https://docs.python.org/3/library/unittest.html#unittest.TestCase
https://docs.python.org/3/library/unittest.html#module-unittest

Rotest Documentation, Release 3.3.2

.
manage.py
rotest_demo

__init__.py
settings.py
urls.py
wsgi.py

Inside it, create a file in the root directory of the project called rotest.yml, that includes all configuration of Rotest:

rotest:
host: localhost
django_settings: rotest_demo.settings

Pay attention to the following:

• The rotest keyword defines its section as the place for Rotest’s configuration.

• The host key is how the client should contact the server. It’s an IP address, or a DNS of the server. For now,
both the client and server are running on the same machine., but it doesn’t have to be that way.

• The django_settings key is directing to the settings of the Django app, that defines all relevant Django configu-
ration (DB configuration, installed Django applications, and so on).

Adding Tests

Let’s create a test that doesn’t require any resource. Create a file named test_math.py with the following content:

from rotest import main
from rotest.core import TestCase

class AddTest(TestCase):
def test_add(self):

self.assertEqual(1 + 1, 2)

if __name__ == "__main__":
main()

That’s a very simple test, that asserts integers addition operation in Python. To run it, just do the following:

$ python test_math.py
21:46:20 : Test run has started

Tests Run Started
21:46:20 : Test AnonymousSuite_None has started running

Test AnonymousSuite Started
21:46:20 : Running AnonymousSuite_None test-suite
21:46:20 : Test AddTest.test_add_None has started running

Test AddTest.test_add Started
21:46:20 : Finished setUp - Skipping test is now available
21:46:20 : Starting tearDown - Skipping test is unavailable
21:46:20 : Test AddTest.test_add_None ended successfully

Success: test_add (__main__.AddTest)
21:46:20 : Test AddTest.test_add_None has stopped running

Test AddTest.test_add Finished
21:46:20 : Test AnonymousSuite_None has stopped running

(continues on next page)

1.2. Getting Started 5

Rotest Documentation, Release 3.3.2

(continued from previous page)

Test AnonymousSuite Finished
21:46:20 : Test run has finished

Tests Run Finished

Ran 1 test in 0.012s

OK
21:46:20 : Finalizing 'AnonymousSuite' test runner
21:46:20 : Finalizing test 'AnonymousSuite'

Alternatively, you can skip importing and using rotest.main(), and use the built-in tests discoverer:

$ rotest test_math.py
or
$ rotest <dir to search tests in>

1.2.3 Using Resources

The true power of Rotest is in its client-server infrastructure, which enables writing resource-oriented tests, running a
dedicated server to hold all resources, and enabling clients run tests.

In this tutorial, you’ll learn:

• How to create a resource class.

• How to run the server, that acts as a resource manager.

• How to write tests that use resources.

Creating a Resource Class

In the root of your project, create a new Django application:

$ django-admin startapp resources

You’ll see a new directory named resources, in the following structure:

.
manage.py
resources

admin.py
__init__.py
migrations

__init__.py
models.py
tests.py
views.py

rotest_demo
__init__.py
__init__.pyc
settings.py
settings.pyc
urls.py
wsgi.py

rotest.yml
test_math.py

6 Chapter 1. Basic

Rotest Documentation, Release 3.3.2

Don’t forget to add the new application as well as rotest to the INSTALLED_APPS configuration in the
rotest_demo/settings.py file:

...

INSTALLED_APPS = (
'rotest.core',
'rotest.management',
'resources',
'django.contrib.admin',
'django.contrib.auth',
...

)

We’re going to write a simple resource of a calculator. Edit the resources/models.py file to have the following
content:

from django.db import models
from rotest.management.models import resource_data

class CalculatorData(resource_data.ResourceData):
class Meta:

app_label = "resources"

ip_address = models.IPAddressField()

The CalculatorData class is the database definition of the Calculator resource. It defines any characteristics it
has, as oppose to behaviour it may have. It’s also recommended adding it to the Django admin panel. Edit the content
of the resources/admin.py file:

from rotest.management.admin import register_resource_to_admin

from . import models

register_resource_to_admin(models.CalculatorData, attr_list=['ip_address'])

Let’s continue to write the Calculator resource, which exposes a simple calculation action. Edit the file resources/
calculator.py:

import rpyc
from rotest.management.base_resource import BaseResource

from .models import CalculatorData

class Calculator(BaseResource):
DATA_CLASS = CalculatorData

PORT = 1357

def connect(self):
self._rpyc = rpyc.classic.connect(self.data.ip_address, self.PORT)

def calculate(self, expression):
return self._rpyc.eval(expression)

def finalize(self):
(continues on next page)

1.2. Getting Started 7

Rotest Documentation, Release 3.3.2

(continued from previous page)

if self._rpyc is not None:
self._rpyc.close()
self._rpyc = None

Note the following:

• There is a use in the RPyC module, which can be installed using:

$ pip install rpyc

• The Calculator class inherits from rotest.management.base_resource.BaseResource.

• The previously declared class CalculatorData is referenced in this class.

• Two methods are used to set up and tear down the connection to the resource: rotest.management.
base_resource.BaseResource.connect() and rotest.management.base_resource.
BaseResource.finalize().

Running the Resource Management Server

First, let’s initialize the database with the following Django commands:

$ python manage.py makemigrations
Migrations for 'resources':

0001_initial.py:
- Create model CalculatorData

$ python manage.py migrate
Operations to perform:

Apply all migrations: core, management, sessions, admin, auth, contenttypes,
→˓resources
Running migrations:

Applying contenttypes.0001_initial... OK
Applying auth.0001_initial... OK
Applying admin.0001_initial... OK
Applying management.0001_initial... OK
Applying management.0002_auto_20150224_1427... OK
Applying management.0003_add_isusable_and_comment... OK
Applying management.0004_auto_20150702_1312... OK
Applying management.0005_auto_20150702_1403... OK
Applying management.0006_delete_projectdata... OK
Applying management.0007_baseresource_group... OK
Applying management.0008_add_owner_reserved_time... OK
Applying management.0009_initializetimeoutresource... OK
Applying management.0010_finalizetimeoutresource... OK
Applying management.0011_refactored_to_resourcedata... OK
Applying management.0012_delete_previous_resources... OK
Applying core.0001_initial... OK
Applying core.0002_auto_20170308_1248... OK
Applying management.0013_auto_20170308_1248... OK
Applying resources.0001_initial... OK
Applying sessions.0001_initial... OK

The first command creates a migrations file, that orders changing the database schemas or contents. The second
command changes the database according to those orders. If the database does not already exist, it creates it.

Let’s run the Rotest server, using the rotest server command:

8 Chapter 1. Basic

Rotest Documentation, Release 3.3.2

$ rotest server

Running in attached mode
Running the Django server as well
<2018-05-23 20:05:26,574>[DEBUG][main@91]: Starting resource manager, port:7777
<2018-05-23 20:05:26,575>[DEBUG][manager@101]: Resource manager main thread started
Performing system checks...

System check identified no issues (0 silenced).
May 23, 2018 - 20:05:28
Django version 1.7.11, using settings 'rotest_demo.settings'
Starting development server at http://0.0.0.0:8000/
Quit the server with CONTROL-C.

Adding a Resource on Django Admin Panel

To sum this up, let’s add a Calculator resource. Run the createsuperuser command to get access to the admin panel:

$ python manage.py createsuperuser
Username (leave blank to use 'user'): <choose a user in here>
Email address: <choose your email address>
Password: <type in your password>
Password (again): <type password again>
Superuser created successfully.

Now, Just enter the Django admin panel (via http://127.0.0.1:8000/admin), access it using the above credentials, and
add a resource with the name calc and a local IP address like 127.0.0.1:

Writing a Resource-Based Test

In this section, we are going to add a resource request to our existing test. The first thing we need to do, is setting up
our resource named calc. We need to run the RPyC server of the calculator, using the following command:

$ rpyc_classic.py --port 1357
INFO:SLAVE/1357:server started on [0.0.0.0]:1357

This way, we have a way to communicate to our resource, which is running on our local computer (or may run on
other computer, assuming you’ve set the corresponding IP address in the Django admin).

Now, let’s change the previously written module test_math.py with the following content:

from rotest import main
from rotest.core import TestCase

from resources.calculator import Calculator

class AddTest(TestCase):
calc = Calculator()

def test_add(self):
result = self.calc.calculate("1 + 1")
self.assertEqual(result, 2)

(continues on next page)

1.2. Getting Started 9

http://127.0.0.1:8000/admin

Rotest Documentation, Release 3.3.2

Fig. 1: Adding a resource via Django admin

10 Chapter 1. Basic

../_images/adding_resource.png

Rotest Documentation, Release 3.3.2

(continued from previous page)

if __name__ == "__main__":
main()

Now, let’s run the test:

$ python test_math.py
AnonymousSuite

AddTest.test_add ... OK

Ran 1 test in 0.160s

OK

Well done! You’ve just written your first resource oriented test, that asserts the behaviour of a simple addition of a
Calculator resource.

1.3 Command Line Options

Let’s go over the some of Rotest features, by examining the command line options.

1.3.1 Server Options

You can run the server using command rotest server. The command by default runs Django’s server as well,
though it can be disabled.

Getting Help

-h, --help
Show a help message and exit.

The --help option is here to help:

$ rotest server --help
Run resource management server.

Usage:
rotest server [options]

Options:
-h, --help Show help message and exit.
-p <port>, --port <port> Port for communicating with the client.
--no-django Skip running the Django web server.
--django-port <port> Django's web server port [default: 8000].
-D, --daemon Run as a background process.

Selecting Server’s Port

--port <port>
Select the port for communicating with the client.

By default, the server uses the specified configuration for the port (see ROTEST_SERVER_PORT), or defaults to
7777. If this port is already in use and you’d like to change it, use option --port:

1.3. Command Line Options 11

Rotest Documentation, Release 3.3.2

$ rotest server --port 8888
Running in attached mode
Running the Django server as well
<2018-05-23 19:54:54,550>[DEBUG][main@91]: Starting resource manager, port:8888
<2018-05-23 19:54:54,551>[DEBUG][manager@101]: Resource manager main thread started
Performing system checks...

System check identified no issues (0 silenced).
May 23, 2018 - 19:54:56
Django version 1.7.11, using settings 'rotest_demo.settings'
Starting development server at http://0.0.0.0:8000/
Quit the server with CONTROL-C.

Skip running Django server

--no-django
Skip running the Django web server.

You can disable running Django server, using option --no-django:

$ rotest server --no-django
Running in attached mode
<2018-05-23 19:54:54,550>[DEBUG][main@91]: Starting resource manager, port:7777
<2018-05-23 19:54:54,551>[DEBUG][manager@101]: Resource manager main thread started

Selecting Django’s Port

--django-port <port>
Select Django’s web server port.

By default, the server uses port 8000 for running Django’s server. If you’d like to change it, use option
--django-port:

$ rotest server --django-port 9000
Running in attached mode
Running the Django server as well
<2018-05-23 19:54:54,550>[DEBUG][main@91]: Starting resource manager, port:7777
<2018-05-23 19:54:54,551>[DEBUG][manager@101]: Resource manager main thread started
Performing system checks...

System check identified no issues (0 silenced).
May 23, 2018 - 19:54:56
Django version 1.7.11, using settings 'rotest_demo.settings'
Starting development server at http://0.0.0.0:9000/
Quit the server with CONTROL-C.

Daemon Mode

-D, --daemon
Run as a daemon process.

12 Chapter 1. Basic

Rotest Documentation, Release 3.3.2

Warning: Not implemented in Windows.

A common case is to run the server in the background. Use options --daemon or -D to run the server as a daemon
process:

$ rotest server --daemon
Running in detached mode (as daemon)

1.3.2 Client Options

Running tests

Running tests can be done in the following ways:

• Using the rotest command:

$ rotest [PATHS]... [OPTIONS]

The command can get every path - either files or directories. Every directory will be recursively visited for
finding more files. If no path was given, the current working directory will be selected by default.

• Calling the rotest.main() function:

from rotest import main
from rotest.core import TestCase

class Case(TestCase):
def test(self):

pass

if __name__ == "__main__":
main()

Then, this same file can be ran:

$ python test_file.py [OPTIONS]

Getting Help

-h, --help
Show a help message and exit.

If you’re not sure what you can do, the help options -h and --help are here to help:

$ rotest -h
Run tests in a module or directory.

Usage:
rotest [<path>...] [options]

Options:

(continues on next page)

1.3. Command Line Options 13

Rotest Documentation, Release 3.3.2

(continued from previous page)

-h, --help
Show help message and exit.

--version
Print version information and exit.

-c <path>, --config <path>
Test configuration file path.

-s, --save-state
Enable saving state of resources.

-d <delta-iterations>, --delta <delta-iterations>
Enable run of failed tests only - enter the number of times the
failed tests should be run.

-p <processes>, --processes <processes>
Use multiprocess test runner - specify number of worker
processes to be created.

-o <outputs>, --outputs <outputs>
Output handlers separated by comma.

-f <query>, --filter <query>
Run only tests that match the filter expression,
e.g. 'Tag1* and not Tag13'.

-n <name>, --name <name>
Assign a name for current launch.

-l, --list
Print the tests hierarchy and quit.

-F, --failfast
Stop the run on first failure.

-D, --debug
Enter ipdb debug mode upon any test exception.

-S, --skip-init
Skip initialization and validation of resources.

-r <query>, --resources <query>
Specify resources to request by attributes,
e.g. '-r res1.group=QA,res2.comment=CI'.

Listing and Filtering

-l, --list
Print the tests hierarchy and quit.

-f <query>, --filter <query>
Run only tests that match the filter expression, e.g. “Tag1* and not Tag13”.

Next, you can print a list of all the tests that will be run, using -l or --list options:

$ rotest some_test_file.py -l
CalculatorSuite []
| CasesSuite []
| | PassingCase.test_passing ['BASIC']
| | FailingCase.test_failing ['BASIC']
| | ErrorCase.test_error ['BASIC']
| | SkippedCase.test_skip ['BASIC']
| | SkippedByFilterCase.test_skipped_by_filter ['BASIC']
| | ExpectedFailureCase.test_expected_failure ['BASIC']
| | UnexpectedSuccessCase.test_unexpected_success ['BASIC']
| PassingSuite []
| | PassingCase.test_passing ['BASIC']
| | SuccessFlow ['FLOW']

(continues on next page)

14 Chapter 1. Basic

Rotest Documentation, Release 3.3.2

(continued from previous page)

| | | PassingBlock.test_method
| | | PassingBlock.test_method
| FlowsSuite []
| | FailsAtSetupFlow ['FLOW']
| | | PassingBlock.test_method
| | | FailingBlock.test_method
| | | ErrorBlock.test_method
| | FailsAtTearDownFlow ['FLOW']
| | | PassingBlock.test_method
| | | TooManyLogLinesBlock.test_method
| | | FailingBlock.test_method
| | | ErrorBlock.test_method
| | SuccessFlow ['FLOW']
| | | PassingBlock.test_method
| | | PassingBlock.test_method

You can see the tests hierarchy, as well as the tags each test has. Speaking about tags, you can apply filters on the tests
to be run, or on the shown list of tests using the -f or --filter options:

$ rotest some_test_file.py -f FLOW -l
CalculatorSuite []
| CasesSuite []
| | PassingCase.test_passing ['BASIC']
| | FailingCase.test_failing ['BASIC']
| | ErrorCase.test_error ['BASIC']
| | SkippedCase.test_skip ['BASIC']
| | SkippedByFilterCase.test_skipped_by_filter ['BASIC']
| | ExpectedFailureCase.test_expected_failure ['BASIC']
| | UnexpectedSuccessCase.test_unexpected_success ['BASIC']
| PassingSuite []
| | PassingCase.test_passing ['BASIC']
| | SuccessFlow ['FLOW']
| | | PassingBlock.test_method
| | | PassingBlock.test_method
| FlowsSuite []
| | FailsAtSetupFlow ['FLOW']
| | | PassingBlock.test_method
| | | FailingBlock.test_method
| | | ErrorBlock.test_method
| | FailsAtTearDownFlow ['FLOW']
| | | PassingBlock.test_method
| | | TooManyLogLinesBlock.test_method
| | | FailingBlock.test_method
| | | ErrorBlock.test_method
| | SuccessFlow ['FLOW']
| | | PassingBlock.test_method
| | | PassingBlock.test_method

The output will be colored in a similar way as above.

You can include boolean literals like not, or and and in your filter, as well as using test names and wildcards (all
non-literals are case insensitive):

$ rotest some_test_file.py -f "basic and not skipped*" -l
CalculatorSuite []
| CasesSuite []

(continues on next page)

1.3. Command Line Options 15

Rotest Documentation, Release 3.3.2

(continued from previous page)

| | PassingCase.test_passing ['BASIC']
| | FailingCase.test_failing ['BASIC']
| | ErrorCase.test_error ['BASIC']
| | SkippedCase.test_skip ['BASIC']
| | SkippedByFilterCase.test_skipped_by_filter ['BASIC']
| | ExpectedFailureCase.test_expected_failure ['BASIC']
| | UnexpectedSuccessCase.test_unexpected_success ['BASIC']
| PassingSuite []
| | PassingCase.test_passing ['BASIC']
| | SuccessFlow ['FLOW']
| | | PassingBlock.test_method
| | | PassingBlock.test_method
| FlowsSuite []
| | FailsAtSetupFlow ['FLOW']
| | | PassingBlock.test_method
| | | FailingBlock.test_method
| | | ErrorBlock.test_method
| | FailsAtTearDownFlow ['FLOW']
| | | PassingBlock.test_method
| | | TooManyLogLinesBlock.test_method
| | | FailingBlock.test_method
| | | ErrorBlock.test_method
| | SuccessFlow ['FLOW']
| | | PassingBlock.test_method
| | | PassingBlock.test_method

Stopping at first failure

-F, --failfast
Stop the run on first failure.

The -F or --failfast options can stop execution after first failure:

$ rotest some_test_file.py --failfast
CalculatorSuite
CasesSuite

PassingCase.test_passing ... OK
FailingCase.test_failing ... FAIL
Traceback (most recent call last):
File "/home/odp/code/rotest/src/rotest/core/case.py", line 310, in test_method_

→˓wrapper
test_method(*args, **kwargs)

File "tests/calculator_tests.py", line 34, in test_failing
self.assertEqual(1, 2)

AssertionError: 1 != 2

==
FAIL: FailingCase.test_failing
--
Traceback (most recent call last):

File "/home/odp/code/rotest/src/rotest/core/case.py", line 310, in test_method_
→˓wrapper

test_method(*args, **kwargs)
File "tests/calculator_tests.py", line 34, in test_failing

(continues on next page)

16 Chapter 1. Basic

Rotest Documentation, Release 3.3.2

(continued from previous page)

self.assertEqual(1, 2)
AssertionError: 1 != 2

Ran 2 tests in 0.205s

FAILED (failures=1)

Debug Mode

-D, --debug
Enter ipdb debug mode upon any test exception.

The -D or --debug options can enter debug mode when exceptions are raised at the top level of the code:

$ rotest some_test_file.py --debug
AnonymousSuite

FailingCase.test ...
Traceback (most recent call last):

File "tests/some_test_file.py", line 11, in test
self.assertEqual(self.calculator.calculate("1+1"), 3)

File "/usr/lib64/python2.7/unittest/case.py", line 513, in assertEqual
assertion_func(first, second, msg=msg)

File "/usr/lib64/python2.7/unittest/case.py", line 506, in _baseAssertEqual
raise self.failureException(msg)

AssertionError: 2.0 != 3
> tests/some_test_file.py(12)test()

10 def test(self):
11 self.assertEqual(self.calculator.calculate("1+1"), 3)

---> 12
13
14 if __name__ == "__main__":

ipdb> help

Documented commands (type help <topic>):
==
EOF c d help longlist pinfo raise tbreak whatis
a cl debug ignore n pinfo2 restart u where
alias clear disable j next pp retry unalias
args commands down jump p psource return unt
b condition enable l pdef q run until
break cont exit list pdoc quit s up
bt continue h ll pfile r step w

Once in the debugging session, you can do any of the following:

• Inspect the situation, by evaluating expressions or using commands that are supported by ipdb. For example:
continuing the flow, jumping into a specific line, etc.

• retry the action, if it’s a known flaky action and someone’s going to take care of it soon.

• raise the exception, and failing the test.

1.3. Command Line Options 17

Rotest Documentation, Release 3.3.2

Retrying Tests

-d <delta-iterations>, --delta <delta-iterations>
Rerun test a specified amount of times until it passes.

In case you have flaky tests, you can automatically rerun a test until getting a success result. Use options --delta
or -d:

$ rotest some_test_file.py --delta 2
AnonymousSuite

FailingCase.test ... FAIL
Traceback (most recent call last):
File "rotest/src/rotest/core/case.py", line 310, in test_method_wrapper

test_method(*args, **kwargs)
File "some_test_file.py", line 11, in test

self.assertEqual(self.calculator.calculate("1+1"), 3)
AssertionError: 2.0 != 3

==
FAIL: FailingCase.test
--
Traceback (most recent call last):

File "rotest/src/rotest/core/case.py", line 310, in test_method_wrapper
test_method(*args, **kwargs)

File "some_test_file.py", line 11, in test
self.assertEqual(self.calculator.calculate("1+1"), 3)

AssertionError: 2.0 != 3

Ran 1 test in 0.122s

FAILED (failures=1)
AnonymousSuite

FailingCase.test ... OK

Ran 1 test in 0.082s

OK

Running Tests in Parallel

-p <processes>, --processes <processes>
Spawn specified amount of processes to execute tests.

To optimize the running time of tests, you can use options -p or --processes to run several work processes that
can run tests separately.

Any test have a TIMEOUT attribute (defaults to 30 minutes), and it will be enforced only when spawning at least one
worker process:

class SomeTest(TestCase):
Test will stop if it exceeds execution time of an hour,
only when the number of processes spawned is greater or equal to 1
TIMEOUT = 60 * 60

def test(self):
pass

18 Chapter 1. Basic

Rotest Documentation, Release 3.3.2

Specifying Resources to Use

-r <query>, --resources <query>
Choose resources based on the given query.

You can run tests with specific resources, using options --resources or -r.

The request is of the form:

$ rotest some_test_file.py --resources <query-for-resource-1>,<query-for-resource-2>,.
→˓..

As an example, let’s suppose we have the following test:

class SomeTest(TestCase):
res1 = Resource1()
res2 = Resource2()

def test(self):
...

You can request resources by their names:

$ rotest some_test_file.py --resources res1=name1,res2=name2

Alternatively, you can make more complex queries:

$ rotest some_test_file.py --resources res1.group.name=QA,res2.comment=nightly

Activating Output Handlers

-o <outputs>, --outputs <outputs>

To activate an output handler, use options -o or --outputs, with the output handlers separated using commas:

$ rotest some_test_file.py --outputs excel,logdebug

For more about output handlers, read on Output Handlers.

1.4 Output Handlers

Output Handlers are a great concept in Rotest. They let you take actions when certain events occurs, as a logic
separated from the test’s logic.

Rotest has several builtin output handlers, as well as enable making custom output handlers.

1.4.1 Dots

The most compact way to display results - using one character per test:

$ python some_test_file.py -o dots
.FEssxu.....FsF..FEE...

...

1.4. Output Handlers 19

Rotest Documentation, Release 3.3.2

Based on the following legend:

. Success
F Failure
E Error
s Skip
x Expected Failure
u Unexpected Success

1.4.2 Full

If you want to just be aware of every event, use the full output handler:

$ python some_test_file.py -o full
Tests Run Started
Test CalculatorSuite Started
Test CasesSuite Started
Test PassingCase.test_passing Started
Success: test_passing (__main__.PassingCase)
Test PassingCase.test_passing Finished
Test FailingCase.test_failing Started
Failure: test_failing (__main__.FailingCase)
Traceback (most recent call last):

File "rotest/src/rotest/core/case.py", line 310, in test_method_wrapper
test_method(*args, **kwargs)

File "tests/calculator_tests.py", line 34, in test_failing
self.assertEqual(1, 2)

AssertionError: 1 != 2

Test FailingCase.test_failing Finished
Test ErrorCase.test_error Started
Error: test_error (__main__.ErrorCase)
Traceback (most recent call last):

File "rotest/src/rotest/core/case.py", line 310, in test_method_wrapper
test_method(*args, **kwargs)

File "tests/calculator_tests.py", line 44, in test_error
1 / 0

ZeroDivisionError: integer division or modulo by zero

...

1.4.3 Tree

For a tree view, use:

$ python some_test_file.py -o tree
CalculatorSuite

CasesSuite
PassingCase.test_passing ... OK
FailingCase.test_failing ... FAIL
Traceback (most recent call last):

File "/home/odp/code/rotest/src/rotest/core/case.py", line 310, in test_method_
→˓wrapper

test_method(*args, **kwargs)
(continues on next page)

20 Chapter 1. Basic

Rotest Documentation, Release 3.3.2

(continued from previous page)

File "tests/calculator_tests.py", line 34, in test_failing
self.assertEqual(1, 2)

AssertionError: 1 != 2

ErrorCase.test_error ... ERROR
Traceback (most recent call last):

File "/home/odp/code/rotest/src/rotest/core/case.py", line 310, in test_method_
→˓wrapper

test_method(*args, **kwargs)
File "tests/calculator_tests.py", line 44, in test_error

1 / 0
ZeroDivisionError: integer division or modulo by zero

...

1.4.4 Logs

To see the logs while running the tests, use logdebug or loginfo. Additionally, you can use pretty for an easier
to read logging system. As expected, logdebug will print every log record with level which is higher or equal to
DEBUG (DEBUG, INFO, WARNING, ERROR, CRITICAL), whereas loginfo will print every log record with level
which is higher or equal to INFO (INFO, WARNING, ERROR, CRITICAL).

1.4.5 XML & Excel

Sometimes, you want to have a better visualization of the results. Rotest can output the results into a human-readable
results.xls file, which can be sent via email for instance. Alternatively, it can output a Junit-compatible XML,
which lots of reporting systems can parse and display. The two relevant options are -o excel and -o xml.

Those artifacts are saved in the working directory of Rotest. For more about this location, see Configurations.

1.4.6 Remote

When adding remote to the list of output handlers, all test events and results are saved in the remote (server’s)
database, which enables keeping tests run history. Furthermore, tests skip delta filtering (--delta run option) queries
the remote database to see which tests already passed.

1.4.7 DB

The db handler behaves the same as remote handler, only uses a local DB (which should be defined in your project’s
settings.py file)

1.4.8 Artifact

This handler saves the working directory of the tests into a ZIP file, which might be useful for keeping important runs’
logs and other files for future debugging or evaluation.

Those artifacts are saved in the artifacts directory of Rotest. It is recommended to make this folder a shared folder
between all your users. For more about this location, see Configurations.

1.4. Output Handlers 21

Rotest Documentation, Release 3.3.2

1.5 Configurations

Rotest behaviour can be configured in the following ways:

• A configuration file called rotest.yml in YAML format.

• Environment variables.

• Command line arguments.

Each way has its own advantages, and should be used in different occasions: configuration file fits where some
configuration should be used by any user of the code, environment variables should be specific per user or maybe
more session-based, and command line arguments are relevant for a specific run.

Note: In general:

• Command line arguments take precedence over environment variables.

• Environment variables take precedence over the configuration file.

• Some configuration attributes have default values, in case there’s no answer.

1.5.1 General

To use a configuration file, put any of the following path names in the project’s root directory: rotest.yml,
rotest.yaml, .rotest.yml, .rotest.yaml.

The configuration file is of the form:

rotest:
attribute1: value1
attribute2: value2

You can configure environment variables this way in Linux / Mac / any Unix machine:

$ export ENVIRONMENT_VARIABLE=value

and this way in Windows:

$ set ENVIRONMENT_VARIABLE=value
$ setx ENVIRONMENT_VARIABLE=value # Set it permanently (reopen the shell)

1.5.2 Working Directory

ROTEST_WORK_DIR
Working directory to save artifacts to.

Rotest uses the computer’s storage in order to save several artifacts. You can use the following methods:

• Define ROTEST_WORK_DIR to point to the path.

• Define workdir in the configuration file:

rotest:
workdir: /home/user/workdir

• Use the default, which is ~/.rotest or %HOME%\.rotest in Windows.

22 Chapter 1. Basic

Rotest Documentation, Release 3.3.2

1.5.3 Host

ROTEST_HOST
DNS or IP address to the Rotest’s server.

Rotest is built on a client-server architecture. To define the relevant server that the client should contact with, use the
following methods:

• Define ROTEST_HOST to point to the server DNS or IP address.

• Define host in the configuration file:

rotest:
host: rotestserver

• Use the default, which is localhost.

1.5.4 Port

ROTEST_SERVER_PORT
Port on the server’s side, to be used for communication with clients.

To define the relevant server’s port the will be opened, and the port clients will communicate with, use the following
methods:

• Define ROTEST_SERVER_PORT with the desired port.

• Define port in the configuration file:

rotest:
port: 8585

• Use the default, which is 7777.

1.5.5 Resource Request Timeout

ROTEST_RESOURCE_REQUEST_TIMEOUT
Amount of time to wait before deciding that no resource is available.

Rotest’s server distributes resources to multiple clients. Sometimes, a client cannot get some of the resources at the
moment, so the server returns an answer that there’s no resource available. This amount of time is configurable via the
following methods:

• Define ROTEST_RESOURCE_REQUEST_TIMEOUT with the number of seconds to wait before giving up on
waiting for resources.

• Define resource_request_timeout in the configuration file:

rotest:
resource_request_timeout: 60

• Use the default, which is 0 (not waiting at all).

1.5.6 Django Settings Module

DJANGO_SETTINGS_MODULE
Django configuration path, in a module syntax.

1.5. Configurations 23

Rotest Documentation, Release 3.3.2

Rotest is a Django library, and as such needs its configuration module, in order to write and read data about the
resources from the database. Define it in the following ways:

• Define DJANGO_SETTINGS_MODULE.

• Define django_settings in the configuration file:

rotest:
django_settings: package1.package2.settings

• There is no default value.

1.5.7 Artifacts Directory

ARTIFACTS_DIR
Rotest artifact directory.

Rotest enables saving ZIP files containing the tests and resources data, using an output handler named artifact
(see Output Handlers). Define it in the following ways:

• Define ARTIFACTS_DIR.

• Define artifact_dir in the configuration file:

rotest:
artifacts_dir: ~/rotest_artifacts

• Use the default, which is ~/.rotest/artifacts.

1.5.8 Shell Apps

rotest shell automatically attempts to load resources classes into the environment to save the user the need to
do so. Define the default rotest applications to be loaded in the following ways:

• Define shell_apps in the configuration file:

rotest:
shell_apps: ["resources", "tools"]

• Use the default, which is [].

1.5.9 Shell Startup Commands

rotest shell enables defining startup commands, to save the user the need to write them every time. The com-
mands must be simple one-liners. Define it in the following ways:

• Define shell_startup_commands in the configuration file:

rotest:
shell_startup_commands: ["from tests.blocks import *"]

• Use the default, which is [].

24 Chapter 1. Basic

Rotest Documentation, Release 3.3.2

1.5.10 Discoverer Blacklist

Rotest enables loading resources from an app, a thing that happens automatically when running “rotest shell”, but
some files can / must be skipped when searching for the resources. The methods (under rotest.management.
utils.resources_discoverer) do get a blacklist argument, but the default value is extracted from the config.

Define it in the following ways:

• Define discoverer_blacklist in the configuration file:

rotest:
discoverer_blacklist: ["*/scripts/*", "*static.py"]

• Use the default, which is [].

1.5. Configurations 25

Rotest Documentation, Release 3.3.2

26 Chapter 1. Basic

CHAPTER 2

Advanced

2.1 Adding Custom Output Handlers

2.1.1 Third Party Output Handlers

• rotest_reportportal

– Plugin to the amazing Report Portal system, that enables viewing test results and investigating them.

2.1.2 How to Make Your Own Output Handler

You can make your own Output Handler, following the next two steps:

• Inheriting from rotest.core.result.handlers.abstract_handler.
AbstractResultHandler, and overriding the relevant methods.

• Register the above inheriting class as an entrypoint, in a setup.py file, and make sure it’s being install on the
environment.

For an example, please refer to rotest_reportportal plugin.

2.1.3 Available Events

The available methods of an output handler:

class rotest.core.result.handlers.abstract_handler.AbstractResultHandler(main_test=None,
*args,
**kwargs)

Result handler interface.

Defines the required interface for all the result handlers.

27

https://github.com/gregoil/rotest_reportportal
http://reportportal.io/
https://github.com/gregoil/rotest_reportportal

Rotest Documentation, Release 3.3.2

main_test
rotest.core.abstract_test.AbstractTest – the main test instance (e.g. TestSuite instance or TestFlow in-
stance).

add_error(test, exception_string)
Called when an error has occurred.

Parameters

• test (rotest.core.abstract_test.AbstractTest) – test item instance.

• exception_string (str) – exception description.

add_expected_failure(test, exception_string)
Called when an expected failure/error occurred.

Parameters

• test (rotest.core.abstract_test.AbstractTest) – test item instance.

• exception_string (str) – exception description.

add_failure(test, exception_string)
Called when an error has occurred.

Parameters

• test (rotest.core.abstract_test.AbstractTest) – test item instance.

• exception_string (str) – exception description.

add_skip(test, reason)
Called when a test is skipped.

Parameters

• test (rotest.core.abstract_test.AbstractTest) – test item instance.

• reason (str) – reason for skipping the test.

add_success(test)
Called when a test has completed successfully.

Parameters test (rotest.core.abstract_test.AbstractTest) – test item in-
stance.

add_unexpected_success(test)
Called when a test was expected to fail, but succeed.

Parameters test (rotest.core.abstract_test.AbstractTest) – test item in-
stance.

print_errors(tests_run, errors, skipped, failures, expected_failures, unexpected_successes)
Called by TestRunner after test run.

Parameters

• tests_run (number) – count of tests that has been run.

• errors (list) – error tests details list.

• skipped (list) – skipped tests details list.

• failures (list) – failed tests details list.

• expected_failures (list) – expected-to-fail tests details list.

• unexpected_successes (list) – unexpected successes tests details list.

28 Chapter 2. Advanced

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Rotest Documentation, Release 3.3.2

setup_finished(test)
Called when the given test finished setting up.

Parameters test (rotest.core.abstract_test.AbstractTest) – test item in-
stance.

should_skip(test)
Check if the test should be skipped.

Parameters test (rotest.core.abstract_test.AbstractTest) – test item in-
stance.

Returns skip reason if the test should be skipped, None otherwise.

Return type str

start_composite(test)
Called when the given TestSuite is about to be run.

Parameters test (rotest.core.suite.TestSuite) – test item instance.

start_teardown(test)
Called when the given test is starting its teardown.

Parameters test (rotest.core.abstract_test.AbstractTest) – test item in-
stance.

start_test(test)
Called when the given test is about to be run.

Parameters test (rotest.core.abstract_test.AbstractTest) – test item in-
stance.

start_test_run()
Called once before any tests are executed.

stop_composite(test)
Called when the given TestSuite has been run.

Parameters test (rotest.core.suite.TestSuite) – test item instance.

stop_test(test)
Called when the given test has been run.

Parameters test (rotest.core.abstract_test.AbstractTest) – test item in-
stance.

stop_test_run()
Called once after all tests are executed.

update_resources(test)
Called once after locking the tests resources.

Parameters test (rotest.core.abstract_test.AbstractTest) – test item in-
stance.

2.2 Blocks code architecture

2.2.1 Background

The blocks design paradigm was created to avoid code duplication and enable composing tests faster.

2.2. Blocks code architecture 29

https://docs.python.org/3/library/stdtypes.html#str

Rotest Documentation, Release 3.3.2

TestBlock is a building block for tests, commonly responsible for a single action or a small set of actions. It
inherits from unittest’s TestCase, enabling it test-like behavior (self.skipTest, self.assertEqual,
self.fail, etc.), and the Rotest infrastructure expands its behavior to also be function-like (to have “inputs” and
“outputs”).

TestFlow is a test composed of TestBlock instances (or other sub-test flows), passing them their ‘inputs’ and
putting them together, enabling them to share data between each other. A TestFlow can lock resources much like
Rotest’s TestCase, which it passes to all the blocks under it.

The flow’s final result depends on the result of the blocks under it by the following order:

• If some block had an error, the flow ends with an error.

• If some block had a failure, the flow ends with a failure.

• Otherwise, the flow succeeds.

See also mode in the TestBlock’s “Features” segment below for more information about the run mechanism of a
TestFlow.

2.2.2 Features

TestFlow

1. blocks: static list or tuple of the blocks’ classes of the flow. You can parametrize blocks in this section, in
order to pass data to them (see Sharing data section or explanation in the TestBlock features section).

2. Rotest’s TestCase features: run delta, filter by tags, running in multiprocess, TIMEOUT, etc. are available
also for TestFlow class.

TestBlock

1. inputs: define class fields and assign them to instances of BlockInput to ask for values for the block (val-
ues are passed via common, parametrize, previous blocks passing them as outputs, or as requested
resources of the block or its containers). You can define a default value to BlockInput to assign if non is
supplied (making it an optional input). For example, defining in the block’s scope

from rotest.core import TestBlock, BlockInput
class DemoBlock(TestBlock):

field_name = BlockInput()
other_field = BlockInput(default=1)

...

will validate that the block instance will have a value for ‘field_name’ before running the parent flow (and unless
another value is supplied, set for the block’s instance: self.other_field=1).

2. outputs: define class fields and assign them to instances of BlockOutput to share values from the in-
stance (self) to the parent and siblings. the block automatically shares the declared outputs after teardown.
For example, defining in the block’s scope

from rotest.core import TestBlock, BlockOutput
class DemoBlock(TestBlock):

field_name = BlockOutput()
other_field = BlockOutput()

...

30 Chapter 2. Advanced

https://docs.python.org/3/library/unittest.html#module-unittest
https://docs.python.org/3/library/unittest.html#unittest.TestCase

Rotest Documentation, Release 3.3.2

means declaring that the block would calculate a values for self.field_name and self.other_field and share them
(which happens automatically after its teardown), so that components following the block can use those fields.
Declaring inputs and outputs of blocks is not mandatory, but it’s a good way to make sure that the blocks “click”
together properly, and no block will be missing fields at runtime.

Common features (for both flows and blocks)

1. resources: you can specify resources for the test flow or block, just like in Rotest’s TestCase class. The
resources of a flow will automatically propagate to the components under it.

2. common: used to set values to blocks or sub-flows, see example in the Sharing data section.

3. parametrize (also params): used to pass values to blocks or sub-flows, see example in the Sharing data
section. Note that calling parametrize() or params() doesn’t actually instantiate the component, but just
create a copy of the class and sends the parameters to its common (overriding previous values).

4. mode: this field can be defined statically in the component’s class or passed to the instance using ‘parametrize’
(parametrized fields override class fields of blocks, since they are injected into the instance). Blocks and sub-
flows can run in one of the following modes (which are defined in rotest.core.flow_component)

(a) MODE_CRITICAL: upon failure or error, end the flow’s run, skipping the following components (except
those with mode MODE_FINALLY). Use this mode for blocks or sub-flows that do actions that are manda-
tory for the continuation of the test.

(b) MODE_OPTIONAL: upon error only, end the flow’s run, skipping the following components (except those
with mode MODE_FINALLY). Use this mode for block or sub-flows that are not critical for the continua-
tion of the test (since a failure in them doesn’t stop the flow).

(c) MODE_FINALLY: components with this mode aren’t skipped even if the flow has already failed and
stopped. Upon failure or error, end the flow’s run, skipping the following components (except those with
mode MODE_FINALLY). Use this mode for example in blocks or sub-flows that do cleanup actions (which
we should always attempt), much like things you would normally put in ‘tearDown’ of tests.

5. request_resources: blocks and flows can dynamically request resources, calling
request_resources(requests) method (see Rotest tutorial and documentation for more infor-
mation).

Since those are dynamic requests, don’t forget to release those resources when they are not needed by calling

release_resources(
<dict of the dynamically locked resources, name: instance>)

Resources can be locked locally and globally in regarding to the containing flow, i.e. by locking the resources
using the parent’s method:

self.parent.request_resources(requests)

The parent flow and all the sibling components would also have them.

Sharing data

Sharing data between blocks (getting inputs and passing outputs) is crucial to writing simple, manageable, and inde-
pendent blocks. Passing data to blocks (for them to use as ‘inputs’ parameters for the block’s run, much like arguments
for a function) can be done in one of the following methods:

• Locking resources - the resources the flow locks are injected into its components’ instances (note that blocks
can also lock resources, but they don’t propagate them up or down). E.g. if a flow locks a resource with name
‘res1’, then all its components would have the field ‘res1’ which points to the locked resource.

2.2. Blocks code architecture 31

Rotest Documentation, Release 3.3.2

• Declaring outputs - see TestBlock’s outputs above.

• Setting initial data to the test - you can set initial data to the component and its sub-components by writing:

class DemoFlow(TestFlow):
common = {'field_name': 5,

'other_field': 'abc'}
...

This will inject field_name=5 and other_field='abc' as fields of the flow and its components before
starting its run, so the blocks would also have access to those fields. Note that you can also declare a common
dict for blocks, but it’s generally recommended to use default values for inputs instead.

• Using parametrize - you can specify fields for blocks or flows by calling their ‘parametrize’ or ‘params’ class
method.

For example:

class DemoFlow(TestFlow):
blocks = (DemoBlock,

DemoBlock.parametrize(field_name=5,
other_field='abc'))

will create two blocks under the DemoFlow, one DemoBlock block with the default values for field_name
and other_field (which can be set by defining them as class fields for the block for example, see optional
inputs and fields section), and a second DemoBlock with field_name=5 and other_field='abc'
injected into the block instance (at runtime).

Regarding priorities hierarchy between the methods, it follows two rules:

1. For a single component, calling parametrize on it overrides the values set through common.

2. common and parametrize of sub-components are stronger than the values passed by containing hier-
archies. E.g. common values of a flow are of lower priority than the parametrize values passed to the
blocks under it.

Example

from rotest.core import TestBlock, BlockInput, BlockOutput
class DoSomethingBlock(TestBlock):

"""A block that does something.

Attributes:
resource1 (object): resource the block uses.
input2 (object): input for the block.
optional3 (object): optional input for the block.

"""
mode = MODE_CRITICAL

resource1 = BlockInput()
input2 = BlockInput()
optional3 = BlockInput(default=0)

output1 = BlockOutput()

def test_method(self):
"""Do something."""
self.logger.info("Doing something")

(continues on next page)

32 Chapter 2. Advanced

Rotest Documentation, Release 3.3.2

(continued from previous page)

value = self.resource1.do_something(self.input2, self.optional3)
self.output1 = value * 5 # This will be shared with siblings

...

class DemoFlow(TestFlow):
"""Demo test-flow."""
resource1 = SomeResourceClass(some_limitation=LIMITATION)

common = {'input2': INPUT_VALUE}

blocks = (DemoBlock1,
DemoBlock2,
DemoBlock1,
DoSomethingBlock.params(optional3=5),
DoSomethingBlock,
DemoBlock1.params(mode=MODE_FINALLY))

Sub-flows

A flow may contain not only test-block, but also test-flows under it. This feature can be used to wrap together blocks
that tend to come together and also to create sub-procedures (if a test block is comparable to a simple function - it
may have inputs and outputs and does a simple action, then a sub-flow can be considered a complex function, which
invokes other simpler functions). Note that a sub-flow behaves exactly like a block, meaning, you can call parametrize
on it, set a mode to it, it can’t be filtered or skipped with delta, etc. This can give extra flexibility when composing
flows with complex scenarios, for example:

Flow
|___BlockA
|___BlockB
|___BlockC
|___BlockD

If you want that block B will only run if block A passed, and that block D will only run if block C passed, but also to
keep A and C not dependent, doing so is impossible without the usage of sub flows. But the scenario can be coded in
the following manner:

Flow
|___SubFlow1 (mode optional)

|___BlockA (mode critical)
|___BlockB (mode critical)

|___SubFlow2 (mode optional)
|___BlockC (mode critical)
|___BlockD (mode critical)

Anonymous test-flows

Sub-flows can be created on-the-spot using the ‘create_flow’ function, to avoid defining classes. The functions gets
the following arguments:

• blocks - list of the flow’s components.

• name - name of the flow, default value is “AnonymousTestFlow”, but it’s recommended to override it.

2.2. Blocks code architecture 33

Rotest Documentation, Release 3.3.2

• mode - mode of the new flow. Either MODE_CRITICAL, MODE_OPTIONAL or MODE_FINALLY. Default is
MODE_CRITICAL.

• common - dict of initial fields and values for the new flow, same as the class variable ‘common’, default is
empty dict.

from rotest.core.flow import TestFlow, create_flow

class DemoFlow(TestFlow):
"""Demo test-flow."""
resource1 = SomeResourceClass(some_limitation=LIMITATION)

blocks = (DemoBlock1,
DemoBlock2,
DemoBlock1,
create_flow(name="TestSomethingFlow",

common={"input2": "value1"}
mode=MODE_OPTIONAL,
blocks=[DoSomethingBlock,

DoSomethingBlock.params(optional3=5)]),
create_flow(name="TestSomethingFlow",

common={"input2": "value2"}
mode=MODE_OPTIONAL,
blocks=[DoSomethingBlock,

DoSomethingBlock.params(optional3=5)]),
DemoBlock1.params(mode=MODE_FINALLY))

34 Chapter 2. Advanced

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

35

Rotest Documentation, Release 3.3.2

36 Chapter 3. Indices and tables

Index

Symbols
–django-port <port>

rotest-server command line option, 12
–no-django

rotest-server command line option, 12
–port <port>

rotest-server command line option, 11
-D, –daemon

rotest-server command line option, 12
-D, –debug

rotest command line option, 17
-F, –failfast

rotest command line option, 16
-d <delta-iterations>, –delta <delta-iterations>

rotest command line option, 18
-f <query>, –filter <query>

rotest command line option, 14
-h, –help

rotest command line option, 13
rotest-server command line option, 11

-l, –list
rotest command line option, 14

-o <outputs>, –outputs <outputs>
rotest command line option, 19

-p <processes>, –processes <processes>
rotest command line option, 18

-r <query>, –resources <query>
rotest command line option, 19

A
AbstractResultHandler (class in

rotest.core.result.handlers.abstract_handler), 27
add_error() (rotest.core.result.handlers.abstract_handler.AbstractResultHandler

method), 28
add_expected_failure() (rotest.core.result.handlers.abstract_handler.AbstractResultHandler

method), 28
add_failure() (rotest.core.result.handlers.abstract_handler.AbstractResultHandler

method), 28

add_skip() (rotest.core.result.handlers.abstract_handler.AbstractResultHandler
method), 28

add_success() (rotest.core.result.handlers.abstract_handler.AbstractResultHandler
method), 28

add_unexpected_success()
(rotest.core.result.handlers.abstract_handler.AbstractResultHandler
method), 28

ARTIFACTS_DIR, 24

D
DJANGO_SETTINGS_MODULE, 24

E
environment variable

ARTIFACTS_DIR, 24
DJANGO_SETTINGS_MODULE, 23, 24
ROTEST_HOST, 23
ROTEST_RESOURCE_REQUEST_TIMEOUT, 23
ROTEST_SERVER_PORT, 11, 23
ROTEST_WORK_DIR, 22

M
main_test (rotest.core.result.handlers.abstract_handler.AbstractResultHandler

attribute), 27

P
print_errors() (rotest.core.result.handlers.abstract_handler.AbstractResultHandler

method), 28

R
rotest command line option

-D, –debug, 17
-F, –failfast, 16
-d <delta-iterations>, –delta <delta-iterations>, 18
-f <query>, –filter <query>, 14
-h, –help, 13
-l, –list, 14
-o <outputs>, –outputs <outputs>, 19
-p <processes>, –processes <processes>, 18

37

Rotest Documentation, Release 3.3.2

-r <query>, –resources <query>, 19
rotest-server command line option

–django-port <port>, 12
–no-django, 12
–port <port>, 11
-D, –daemon, 12
-h, –help, 11

ROTEST_HOST, 23
ROTEST_RESOURCE_REQUEST_TIMEOUT, 23
ROTEST_SERVER_PORT, 11, 23
ROTEST_WORK_DIR, 22

S
setup_finished() (rotest.core.result.handlers.abstract_handler.AbstractResultHandler

method), 28
should_skip() (rotest.core.result.handlers.abstract_handler.AbstractResultHandler

method), 29
start_composite() (rotest.core.result.handlers.abstract_handler.AbstractResultHandler

method), 29
start_teardown() (rotest.core.result.handlers.abstract_handler.AbstractResultHandler

method), 29
start_test() (rotest.core.result.handlers.abstract_handler.AbstractResultHandler

method), 29
start_test_run() (rotest.core.result.handlers.abstract_handler.AbstractResultHandler

method), 29
stop_composite() (rotest.core.result.handlers.abstract_handler.AbstractResultHandler

method), 29
stop_test() (rotest.core.result.handlers.abstract_handler.AbstractResultHandler

method), 29
stop_test_run() (rotest.core.result.handlers.abstract_handler.AbstractResultHandler

method), 29

U
update_resources() (rotest.core.result.handlers.abstract_handler.AbstractResultHandler

method), 29

38 Index

	Basic
	Rotest
	Getting Started
	Command Line Options
	Output Handlers
	Configurations

	Advanced
	Adding Custom Output Handlers
	Blocks code architecture

	Indices and tables

